首页> 外文OA文献 >Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks
【2h】

Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks

机译:注意分解机器:学习特征的权重   通过注意网络进行交互

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Factorization Machines (FMs) are a supervised learning approach that enhancesthe linear regression model by incorporating the second-order featureinteractions. Despite effectiveness, FM can be hindered by its modelling of allfeature interactions with the same weight, as not all feature interactions areequally useful and predictive. For example, the interactions with uselessfeatures may even introduce noises and adversely degrade the performance. Inthis work, we improve FM by discriminating the importance of different featureinteractions. We propose a novel model named Attentional Factorization Machine(AFM), which learns the importance of each feature interaction from data via aneural attention network. Extensive experiments on two real-world datasetsdemonstrate the effectiveness of AFM. Empirically, it is shown on regressiontask AFM betters FM with a $8.6\%$ relative improvement, and consistentlyoutperforms the state-of-the-art deep learning methods Wide&Deep and DeepCrosswith a much simpler structure and fewer model parameters. Our implementation ofAFM is publicly available at:https://github.com/hexiangnan/attentional_factorization_machine
机译:分解机(FMs)是一种监督式学习方法,通过结合二阶特征交互作用来增强线性回归模型。尽管有效果,但FM可能会因其具有相同权重的所有功能交互的建模而受到阻碍,因为并非所有功能交互都同样有用和可预测。例如,与无用功能的交互甚至可能会引入噪音并不利地降低性能。在这项工作中,我们通过区分不同功能交互的重要性来改善FM。我们提出了一种新的模型,称为注意力分解机(AFM),该模型通过非神经注意网络从数据中了解每个特征交互的重要性。在两个真实世界的数据集上进行的大量实验证明了AFM的有效性。从经验上看,它在回归任务上显示AFM以8.6%的相对改进使FM更好,并且始终以最简单的结构和更少的模型参数优于最新的深度学习方法Wide&Deep和DeepCross。我们对AFM的实现可从以下网址公开获得:https://github.com/hexiangnan/attentional_factorization_machine

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号